subjected to a fixed strain, the stress within the tissue
decreases, i.e. it experiences stress relaxation.
Similarly, when a tissue is subjected to a fixed stress
its strain will continue to increase, i.e. it exhibits
creep.

Recent experiments have used synchrotron radiation
to investigate the orientation of collagen fibrils in
skin and perimysium (muscle connective tissue) [7].
In both tissues, the initial application of load leads to
fibrils tending to reorient in the direction of applied
load. However, there was no detectable change in
fibril orientation during either creep or stress
relaxation. These results indicate that simple
geometric models are inadequate to explain the
viscoelastic properties of ECM. This result is
expected for stress relaxation, where the overall
dimensions of the tissue do not change, and is
consistent with X-ray diffraction patterns of
intervertebral disc [4] and ligaments [5] showing
fixed fibril orientations over a period of about 30 min
at fixed strains. However, the results of creep
experiments are more surprising and merit further
mvestigation.

Preliminary experiments are also being performed on
the response of the collagen fibril network of uterine
cervix to creep (in collaboration with Mr
S.J.Wilkinson). These experiments are being
performed on rat tissue which provides an
established model for the changes which occur in the
human cervix during labour [6]. The creep rate of the
cervix increases at term, allowing it to dilate so that
the neonate can pass through. Furthermore, this
change in mechanical properties is accompanied by a
change in NMR relaxation times [14] which may
explain the changes apparent in MR images of
human patients. Understanding the relationship
between structure and mechanical properties of the
the rat cervix may then be a step in relating the
appearance of the human cervix in MR images to its
properties and, hence, to the diagnosis of a cervix
which changes its mechanical properties too early in
pregnancy or not at all.
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Introduction

Diffraction patterns from some polycrystalline fibres
contain sharp Bragg reflections at low resolution,
giving way to continuous layer line intensities at
high resolution [1,2]. Such specimens are essentially
polycrystalline, but the packing of the molecules in
the crystallites is disordered. Accurate structure



determination using data from such diffraction
patterns requires that the effects of disorder on the
diffracted intensitics be included in a rigorous
manner. Towards this end, we have developed
models of disordered polycrystalline fibres and their
diffraction properties [3-7], which we summarise
here.

The approach we adopt involves construction of
statistical models of disordered crystallites, and
calculation of resulting diffraction patterns. Disorder
is described in terms of probability density functions
that describe perturbations of the crystalline structure
away from ideal order, and the diffraction from a
fibre 1s calculated as an ensemble average over the
imperfect crystallites. An alternative approach is to
build representative crystallites based on appropriate
intermolecular potentials and average the diffraction
over many such realisations. Although this approach
may be useful for some simple systems, for more
complex systems it has the disadvantage that the
results depend on knowing the relevant potentials
quite accurately, and it is enormously expensive
computationally. Our approach is to describe the
overall distortions in the crystal lattice (which are the
primary determinants of the diffraction) while
ignoring the details of the particular interactions that
give rise to these. The advantage of this approach is
that it is generally applicable, and analytical
expressions can be obtained that allow efficient
calculation of diffraction patterns.

It is convenient to regard disorder as having two
components, referred to as lattice disorder and
substitution disorder. Lattice disorder consists of
deviations in the positions of the molecules from
those in an average lattice. The molecules are treated
as rigid bodies, so that lattice disorder consists of
distortions of a two-dimensional lattice into three-
dimensional space. Substitution disorder consists of
variations in the dispositions of the molecules at each
lattice site, which in our case consists of rotations of
the molecules about their long axes, and variations in
their direction (“up” or “down’’). Lattice and
substitution disorder are assumed to be independent
of each other.

The layer line intensities diffracted from an ensemble
of disordered crystallites can be written as

(R)={{I(R v, 2= f/c)>d>w (1)

where I(R,y,Z) is the intensity diffracted from a

single crystallite, { ), denotes averaging over all
states of disorder, { ), denotes cylindrical averaging,
and c is the axial repeat distance of the molecules.
The problem is then one of constructing appropriate
models of a disordered crystallite and evaluating the
averages in eq. (1). We have considered two different
kinds of models; one of uncorrelated disorder, and
the other of correlated disorder.

Uncorrelated disorder

In the case of uncorrelated disorder, for the lattice
disorder we assume Gaussian statistics, that the
components of the distortion vectors are
independent, and that the variances of components in
the ‘lateral’ plane (normal to the fibre axis) are equal.
The cylindrically averaged diffracted intensity can
then be expressed as the sum of Bragg (B) and
diffuse (D) or continuous components [3,4]:

L(R)=I/(R)+ IP(R) (2)

The Bragg component consists of sharp reflections
whose widths (shapes) depend on the average
crystallite size (as well as instrumental effects) and
are constant throughout reciprocal space. As a result
of the disorder, the magnitude of the Bragg
reflections is weighted down with increasing
resolution, the weighting function being given by [4]

Wiarffn’(Rf Z) . exp(mq'ﬂ-z[Rzo-zhH i ZQGQru‘mI ]) (3)

where ¢%,, and ¢° ,, are the variances of the lateral
and axial distortions, respectively. The diffuse
component consists of the continuous layer line
diffraction that would be diffracted by a
noncrystalline fibre except that, as a result of the
disorder, it is weighted up (by [1-w,,,.(R,Z)]) with
increasing resolution. The effect of substitution
disorder is to weight the different Fourier-Bessel
structure factors, G, (R), by the weighting function

J-ﬂzx P(QZ)exp[i(Zﬁzl/C - r1¢)]d¢dz (4)

el

WH' = 0

where p(¢,z) 1s the probability density function for
the angular position of a molecule deviating by ¢,
and the axial position deviating by z, from their
values in an ordered lattice [4]. A particular kind of
disorder 1s described by a particular p(¢,z) from
which the w , can be calculated [4]. The effect of
rotational disorder is to weight down the contribution
of the higher order Fourier-Bessel terms to the Bragg
intensity, and to correspondingly increase their




contribution to the diffuse intensity. The larger the
variance of the rotational disorder, the more rapidly
the weights fall off with Bessel order. For random
only the zero-order Bessel term
contributes to the Bragg intensity and the non-zero
orders contribute to the diffuse intensity. For
specimens in which the molecules are screw
disordered (i.e. rotational disorder is coupled to
translational disorder), for an integral helix, the
contribution of a Fourier-Bessel term to the Bragg
intensity is weighted down more with increasing
difference between the Bessel order and the layer
line index, and the contribution to the diffuse
intensity is correspondingly weighted up [4].

rotations,

The effects of uncorrelated disorder are illustrated in
figure 1 which shows the layer line amplitudes //*(R)
for random screw disorder, (a) alone and (b) with
lattice disorder, for a molecule with 10-fold helix
symmetry [4]. In (a) Bragg reflections are eliminated
close to the meridian on the higher layer lines, but
persist out to high resolution on all layer lines. The
effect of adding lattice disorder is to suppress the
Bragg retlections at high resolution as shown in (b).
Note the importance of the lattice disorder in
suppressing the Bragg reflections at high resolution,
a feature that cannot be explained by screw disorder
alone.

By calculating diffraction patterns using a molecular
structure and the model of disorder described above,
and comparing them with measured diffraction
patterns, the disorder parameters may be adjusted, in
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an iterative fashion, to optimise the agreement
between the calculated and measured patterns [5].
This allows one to identify the kind and degree of
disorder in a particular fibre specimen. An example
is shown in figure 2 [5]. One quadrant of a diffraction
pattern  recorded from a  polynucleotide
(poly(dA)-poly(dT)) fibre is shown in (a), and that
calculated from an optimised model (including the
effects of coherence length, crystallite size and
disorientation) is shown in (b). The resulting model

# L
_k )

b

Figure 2: (a) Measured and (b) calculated (with uncorrelated disorder) diffraction patterns, in one quadrant of reciprocal space
from a (poly(dA)-poly(dT)) fibre [5].




incorporates random screw disorder and lattice
distortions with standard deviations of 0.6A" along
the molecular axes and 0.5A" normal to the
molecular axes.

Correlated disorder

In a close-packed system such as a crystallite in a
polymer fibre, it is probable that distortions at one
lattice site will influence the distortions at
neighbouring sites. Furthermore, diffraction patterns
from some disordered fibres do not appear to consist
of distinct Bragg and diffuse components as
described above, but contain Bragg reflections that
broaden with increasing resolution and blend into the
continuous diffraction at high resolution. This is
generally considered to result from correlated
distortions of the crystal lattice [8,9]. Although there
may be correlations between the rotational
distortions of neighbouring molecules, these are
likely to be weaker and not of a general, simple form.
The second model we consider therefore, is one of
correlated  lattice disorder and uncorrelated
substitution disorder. Although the paracrystalline
model is often used to describe correlated disorder in
polymer crystals [8], we have chosen to use a
perturbed lattice model [9] to avoid some of the
difficulties inherent in the paracrystalline
model[6,7]. We impose a correlation field on the
crystal lattice, rather than deriving the correlations
from nearest neighbour statistics, as this allows
manageable expressions for calculating diffraction
patterns to be obtained [6,7].

For the lattice disorder, the components of the
distortion vectors are as described above, except that
the distortions at neighbouring sites are coupled, the
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coupling being described by two exponential
correlation fields, one for the lateral distortions and
one for the axial distortions. The disorder is then
described by lateral and axial variances, and lateral
and axial correlation lengths. The degree of order in
the lattice decreases as the variance increases, and
increases as the correlation length increases.
Uncorrelated substitution disorder (as described
above) can be incorporated using the weights w,,
Because of the correlations, the diffracted intensity
does not separate into two components as in eq. (2),
and it 1s not possible to express it in terms of only
reciprocal space quantities. The diffracted intensity
must be expressed as a sum over the real space
lattice, although considerable analytical
simplification is possible that allows efficient
computation of the cylindrically averaged intensity

1(R)= Y w, (R )X H,(R.0) i

m.n

[6,7]. The result can be expressed in the form

where the sum over j is over the sites of the
undistorted two-dimensional lattice within the region
of the autocorrelation function of the crystallite, the
(r.¢,) are the polar coordinates of these sites, the w,
depend on the site variances and correlation lengths,
the sum over m and n is over the orders of the
contributing Bessel terms, and the H,, depend on the
substitution disorder weights and Fourier-Bessel
structure factors [6,7].

Figure 3 shows calculated diffraction patterns that
illustrate the effects of correlated lattice disorder for
a molecule with [1-fold helix symmetry [7]. The
pattern shown in (a) is for a fibre with uncorrelated
axial lattice disorder only, which has the effect of
introducing diffuse intensity on the upper layer lines
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Figure 3: Calculated layer line amplitudes for a polycrystalline fibre with (a) uncorrelated axial lattice disorder, and (b) correlated

lateral and axial lattice disorder [7].
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Figure 4: Equatorial diffracted amplitude, (a) measured from a
(poly(dA)-poly(rU)) fibre, (b) calculated for uncorrelated
disorder, and (c¢) calculated for correlated disorder [7].

with superimposed Bragg reflections of invariant
width. The pattern in (b) shows the effects of
correlated lateral and axial lattice disorder; the Bragg
peaks broaden with increasing resolution and blend
into the diffuse diffraction, and the pattern no longer
has the appearance of a Bragg component
superimposed on a continuous component.

As in the case of correlated disorder, comparison of
diffraction patterns calculated using the model of
correlated disorder with measured patterns may be
used to characterise correlated disorder in a fibre
specimen. Figure 4 shows the results of such a
calculation [7]. The diffraction pattern from a
polynucleotide (poly(dA)-poly(rU)) fibre shows
evidence of correlated lateral lattice disorder since
the Bragg reflections on the equator broaden and
give way to continuous amplitude with increasing
resolution (a). The best fit to the measured equatorial
diffraction using a model of uncorrelated disorder
(corrected for the effects of disorientation. coherence
length, and instrumental broadening) is shown in (b).
Although the calculated pattern matches most of the
features of the observed pattern, it produces
shoulders on the Bragg reflections, and Bragg
reflections of constant width, neither of which are
consistent with the data, and both indicating the
presence of correlated disorder. A diffraction pattern
calculated from an optimised model containing
correlated lateral lattice disorder is shown 1in (¢), and
18 seen to significantly reduce the discrepancies
noted above. In this case, the lateral variance and
correlation length are 1.9A and 125A, respectively.

Conclusions

We have developed two rather general models of
disordered polycrystalline fibres that allow efficient
calculation of diffraction patterns. The model of
uncorrelated lattice disorder and uncorrelated
substitution disorder is formulated in reciprocal
space and appears to explain most of the features
seen in diffraction patterns from some disordered
fibres. The second model includes correlated lattice
distortions (which are expected to be present to at
least some degree), is formulated in real space, and
appears to explain peak broadening seen in
diffraction patterns from some fibres. Both models
are quite flexible, and parameters describing the
disorder can be adjusted to optimise the models
against fibre diffraction data.
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